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Fig. 1: Overview of the Grasp-to-Act framework. (Left) A human demonstration trajectory provides the a reference of the dynamic
conditions during tool using, as well as the initial grasping locations. Accordingly, we sample a series of grasps and score them to identify
stable grasp candidates (middle left). A reinforcement learning policy then performs online-grasp adaptation by adjusting finger joint
positions under task-specific force conditioning (middle right). The resulting policy is zero-shot deployed in the real world (right).

Abstract— Achieving robust grasping with dexterous hands
remains challenging, especially when manipulation involves
dynamic forces such as impacts, torques, and continuous
resistance—situations common in real-world tool use. Existing
methods largely optimize grasps for static geometric stability
and often fail once external forces arise during manipula-
tion. We present Grasp-to-Act, a hybrid system that combines
physics-based grasp optimization with reinforcement-learning-
based grasp adaptation to maintain stable grasps throughout
functional manipulation tasks. Our method synthesizes robust
grasp configurations informed by human demonstrations and
employs an adaptive controller that residually issues joint
corrections to prevent in-hand slip while tracking the object
trajectory. Grasp-to-Act enables robust zero-shot sim-to-real
transfer across five dynamic tool-use tasks—hammering, saw-
ing, cutting, stirring, and scooping—consistently outperforming
baselines. Across simulation and real-world hardware trials
with a 16-DoF dexterous hand, our method reduces transla-
tional and rotational in-hand slip and achieves the highest task
completion rates, demonstrating stable functional grasps under
dynamic, contact-rich conditions.

I. INTRODUCTION

Grasping is the first step toward manipulation and remains
a long-standing challenge in robotics [1]. Most existing
work focuses on identifying grasp locations based on object
geometry, typically defining success as the ability to lift or
hold an object stably in mid-air [2], [3], [4]. Such approaches
often neglect the object’s weight and dynamic interactions.
In real-world manipulation, however, grasping must account
for diverse object properties and task requirements. Tool
use exemplifies this challenge—tasks such as hammering a
nail or cutting wood with a saw involve heavy objects and
asymmetric grasping configurations that generate significant
torque on the hand. Moreover, these tasks introduce sub-
stantial disturbance forces and torques, whether from object
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dynamics (e.g., swinging a hammer) or contact interactions
(e.g., impact during nail driving or resistance during sawing).
These factors place much higher demands on grasp stability.

In such scenarios, dexterous hands are essential. While
low degree of freedom (DoF) grippers—such as parallel-jaw
or suction grippers—are widely used, their limited contact
points restrict their ability to counteract large torques and
maintain stable grasps under strong disturbances. Dexterous
hands, in contrast, can form power grasps in which the palm
provides a broad contact area to balance torque while the
fingers wrap around the object to prevent slipping. Despite
their potential, dexterous-hand grasping remains a difficult
and relatively underexplored problem. The high dimensional-
ity of these hands makes planning robust grasps challenging,
and existing studies primarily emphasize geometric grasp
location selection [5], [6], [7], with limited investigation into
grasp stability under large external loads.

To tackle these challenges, grasp planning for dexterous
hands must explicitly account for grasp stability under real-
istic conditions, incorporating the effects of object weight,
grasp-induced torque, and disturbances from both object
dynamics and environmental interactions.

We propose Grasp-to-Act (G2A), a hybrid framework
designed to ensure stable grasps during dynamic, functional
tasks. G2A introduces a stability evaluation protocol that
tests candidate grasps under extreme forces and torques to
identify those robust enough for contact-rich manipulation.
The protocol is guided by human demonstrations—robots
reproduce human motion trajectories during real-world tool-
use tasks, while the resulting impedance forces and torques
on the objects are modeled to assess grasp stability.

Our G2A pipeline consists of two stages for the grasp-
to-act process: an initial grasp, where we sample a set of
candidate grasp configurations in a physics-based simulation
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platform and evaluate their stability under various distur-
bance forces; an online adaptation phase, when performing
the human-demonstrated trajectory, where we develop an
RL-based controller to counteract unexpected in-hand motion
of the objects.

We validate our method across five representative func-
tional manipulation tasks—hammering, sawing, cutting, stir-
ring, and scooping—using a simulated and real-world robot
platform equipped with a LEAP hand [8]. Our experiments
show that combining grasp optimization with online-grasp
adaptation significantly improves grasp stability and task
success compared to baselines that rely solely on static
optimization or RL. G2A represents a shift from grasping as
a static objective to grasping as an enabling step for manip-
ulation, moving toward robots that can perform purposeful,
task-driven interaction with the physical world.

II. RELATED WORK

A. Dextrous Grasp Synthesis

Dexterous grasp synthesis aims to determine stable contact
configurations for multi-fingered robotic hands given an
object mesh, point cloud, or other perceptual input.

Classical approaches [5], [7], [9] optimize analytical met-
rics such as force closure [6], form closure [10], min-
weight metric [11], or Ferrari–Canny metric [12] using
sampling-based or gradient-based methods. However, these
methods suffer from two key limitations. First, they rely
on accurate object models and often make strong contact
assumptions [1], such as perfect rigidity, point contacts, zero
or uniform friction, and a quasi-static setting (i.e. no contact
breakage). Second, they typically optimize only for fingertip
contact points that result in precision grasps, overlooking
the broader range of grasp taxonomies [13]. In practice,
these methods are not applicable to heavy or irregularly
shaped objects such as tools. To address these concerns, we
build our grasp synthesis pipeline entirely within a physics-
based simulator and employ stochastic sampling to generate
a diverse set of candidate grasps across functional regions of
the object.

Data-driven methods [2], [3], [14], [15], [16] for dexterous
grasp synthesis typically rely on large-scale datasets [17],
[18] of synthetic grasps paired with perceptual inputs, often
generated using the grasp optimization techniques described
earlier. Because these optimization frameworks frequently
synthesize physically infeasible grasps, many datasets apply
a post hoc filtering step using physics-based simulators
to discard unstable grasps, typically through a simple 1D
or 6D gravitational test. Recently, efforts have focused on
retaining and ranking both successful grasps and high-quality
failed examples [19], driven by the strong performance of
discriminative models for parallel-jaw grasping [20]. Multi-
GripperGrasp [21] addresses this by assigning a continuous
score based on the object’s fall-off time under gravity.
Get a Grip [3] simulates grasps under small perturbations
and averages the outcomes to estimate the probability of
success. However, both evaluation strategies are limited to
testing gravitational stability. Drawing from these methods,

we design a set of rigorous wrench-space stability tests
that evaluate our synthesized grasps under extreme forces
and torques, enabling us to rank and select the most stable
candidates for downstream tasks.

B. Reinforcement Learning for Dexterous Manipulation

Reinforcement learning (RL) has demonstrated strong
potential in dexterous manipulation, achieving impressive
results in tasks such as pick-and-place, in-hand reorientation,
and object relocation [22], [23], [24]. However, these tasks
primarily involve isolated object motion and do not account
for the external forces, impacts, and torques that arise in real-
world tool-use and contact-rich manipulation. As a result,
existing RL policies are not designed to maintain grasp
stability under dynamic interactions with the environment.
Furthermore, they often rely on extensive training, carefully
shaped task-specific rewards, and heavy domain randomiza-
tion to achieve sim-to-real transfer—factors that limit their
scalability to dynamic force-intensive tasks.

To improve sample efficiency and encourage physically
meaningful behaviors, many works incorporate human priors
by initializing RL policies from human motion data or pre-
grasp configurations [25], [26], [27], [28], [29]. While such
priors accelerate learning, they cannot guarantee grasp stabil-
itys once dynamic forces act on the object. Other approaches
reduce the action dimensionality using eigengrasp-based
controllers [7], [30], [31], but the resulting low-rank control
spaces limit the fine-grained torque regulation required for
dynamic grasp adaptation.

In contrast, our method employs RL not to learn full
manipulation behaviors but to adapt grasp stability online
during tool-use trajectories. By initializing the policy from
analytically stable grasps and training on residual joint
corrections, our approach mitigates the impact of inaccurate
contact dynamics [32], [33] and improves robustness under
strong external forces.

III. METHOD

To enable robots to succeed in dexterous grasping tasks,
grasps must not only be stable but also functionally appro-
priate (e.g., holding a hammer by the handle rather than by
the head). Furthermore, for successful task execution, the
robot hand must maintain this stable grasp while follow-
ing the task-specific trajectories. Our framework integrates
sampling-based grasp synthesis with online reinforcement
learning–based adaptation, as illustrated in Fig. 2.

A. Human Demonstration

We begin by recording an RGBD video {It}Tt=1 of a
human demonstrating the process of grasping the target tool
and performing the task. This demonstration data is used for
two purposes: initializing the search space for the task-driven
grasping, and providing a reference trajectory of moving the
object in grasp.

Based on each frame in the video, we extract the object’s
6D pose trajectory using FoundationPose [34], conditioned



q̇

z

θ

yx

Joint Space Sampling Initiating Grasp Wrench-Space Tests RL Task Training

BA C D E

Grasp Pose Sampling

Et
Eθ

Fig. 2: Pipeline of sampling and evaluating grasps. (A) We initialize the range of grasp locations based on human demonstration. (B-C)
Candidate grasps are generated by varying joint-level parameters. (D) Each grasp is evaluated through wrench-space stability tests along
six force and torque axes. (E) Top-ranked grasps are used as the initial grasp for conducting the tool-using trajectory, followed by online
RL-based adaptation.

on the object’s mesh, the full RGB-D video, and a segmen-
tation mask of the object in the first frame. The initial mask
is obtained using Grounded-SAM [35], prompted with the
object name and the initial RGB image without occlusions.
This process produces a per-frame object pose sequence
{Tt

obj}Tt=1, where Tt
obj ∈ SE(3). The object trajectory is used

to define a task-specific reward for trajectory tracking during
policy learning.

To localize the human’s grasp, we annotate the timestep
τ at which the object begins task motion. At this frame, we
estimate the 6D wrist pose Tτ

wrist ∈ SE(3) in the camera
frame using the pipeline introduced by Lum et al [26].
Specifically, we use an off-the-shelf hand pose estimator,
HaMeR [36], to obtain a detailed representation of the
hand [37], then refine the result using ICP alignment between
the predicted hand mesh and the observed depth image Iτ .
The resulting wrist pose Tτ

wrist is used to guide downstream
grasp synthesis.

B. Grasp Synthesis and Evaluation

To generate an initial grasp, we sample a set of feasible
candidate grasp configurations and evaluate their stability.
Based on a stability score, we select the optimal grasp con-
figuration to execute the trajectory. This process is performed
in simulation (Isaac Lab [38]).

1) Grasp Generation: We define a grasp configuration
as G = {qo,Tgrasp}, consists of the robot’s finger joint
angles qo ∈ Rn and the wrist pose Tgrasp ∈ SE(3) in the
object frame. During the grasp formation process, the object
is suspended in mid-air. The grasp generation procedure
involves two primary steps:

a) Functional Wrist Region Sampling: We define the
grasp region based on the human wrist pose Tτ

wrist. Candidate
wrist poses Tgrasp are uniformly sampled within a predefined
region centered on the human wrist pose Tτ

wrist. Formally,
Tgrasp = Tτ

wrist ·Tperturb, where Tperturb includes translations
∆{x, y, z} and rotations ∆{θx, θy, θz}, each sampled uni-
formly within specified limits, represented by the box in
Fig. 2A.

b) Finger Configuration Sampling: To synthesize di-
verse grasps that can robustly conform to varied object
geometries, we sample several parameters controlling the
initial finger configurations (shown in Fig. 2B) and dynamics
of finger closing:

• Inter-finger Angles (θf ): Angles between adjacent fin-
gers f are uniformly sampled to directly control how
spread apart these fingers are at grasp initiation. The
thumb angle θt is sampled separately based on its initial
configuration. Varying these angles enables the grasp to
accommodate objects of different widths and shapes.

• Joint Group Closing Rates (q̇g): Each finger is divided
into hierarchical joint groups (proximal, intermediate,
distal segments), and each group g is assigned its own
randomized closing speed. By independently varying
these closing rates, the fingers can form distinctly differ-
ent grasp shapes. For example, faster distal joints with
slower proximal joints lead to claw-like grasps, while
synchronized rates among all joints produce enveloping,
power-like grasps.

• Joint Torque Threshold (τ∗q ) : Finger joints stop closing
when their exerted joint torque exceeds a uniformly
sampled threshold τ∗q . Randomizing this threshold leads
to grasps with different levels of tightness, which helps
the hand adapt to objects with varying shapes and
surface features. This variation makes it easier to gen-
erate grasps that can handle surface irregularities or
misalignments during grasp formation.

After the grasping is complete, the object is unfrozen,
allowing it to settle naturally under contact and gravity
(shown in Fig. 2C).

2) Grasp Stability Scoring: Each generated grasp con-
figuration G is evaluated for stability through a set of
disturbance wrench tests. Here, the wrench-space comprises
all Cartesian force and torque axes in both positive and neg-
ative directions (±x,±y,±z), totaling 12 independent test
dimensions, Fig. 2D. In each wrench-space test dimension
i, the magnitude of the external wrench is increased linearly
from zero up to a predefined maximum force Fmax or torque
τmax for a fixed duration tmax. In-hand slip is defined as
object deviation beyond position or orientation thresholds
(δp, δθ). When a slip occurs, the test is terminated, and
we record the elapsed stable time t

(i)
stable for that direction.

The grasp stability score SG is then computed by averaging
the stable time fractions across all wrench-space dimensions:

SG = 1
12

∑12
i=1

t
(i)
stable
tmax

.

Before each test, the grasp configuration G is reinstated
to ensure consistent initial conditions. The grasps are ranked



according to their stability score SG, and the highest-ranked
grasps G∗ are selected and stored for online grasp adaptation.
The grasp synthesis and evaluation pipeline is parallelized
and can identify hundreds of usable grasps and multiple
robust grasps within 2 minutes.

C. Online Grasp Adaptation

After performing the initial grasp, we implement a re-
inforcement learning (RL) policy πθ focused on fine-tuning
finger joint movements to maintain grasp stability throughout
dynamic task execution. We formulate this as a grasp refine-
ment problem from optimized grasps G∗, where the joint
angles are initialized to qo, and the grasp pose Tgrasp is kept
fixed in the object’s frame. Formally, Tt

hand = Tt
obj · Tgrasp,

giving us the location of the robot wrist at timestep t.
1) Simulation Environment: For efficient training and

scalability across diverse tasks, we develop a simulation
environment that abstracts complex physical interactions into
simplified force-based models. Tasks that involve interactions
with fluids or deformable materials, such as stirring pancake
batter or cutting cucumbers, are computationally expensive
to simulate directly. To overcome this limitation, we approx-
imate these interactions using strategically applied forces at
relevant object contact points. We categorize these forces into
two types:
• Resistive Forces (Fres): These forces act in the oppo-

site direction of the intended tool motion, simulating
frictional and resistive interactions. Formally, Fres =
kres ·veff, where kres is the resistive coefficient and veff is
the local velocity vector. For example, a resistive force
is applied to the end effector of the spoon while stirring
pancake batter.

• Application Forces (Fapp): These are modeled as di-
rectional forces applied onto the object (e.g., payload,
normal). Formally, Fapp = kapp · d̂, where kapp is the
application coefficient and d̂ is the task-specific unit
direction. For instance, a continuous downward force
simulates the weight of the scooped item, turning off
upon dumping.

Real-world payloads and contact forces are measured
during task execution. We match our measured values to
the simulation by tuning our force coefficients (kres, kapp) on
a per-task basis. Further, we apply domain randomization
to our coefficients to improve performance under real-world
conditions.

2) Reinforcement Learning Formulation: We define a
reinforcement learning policy πθ parameterized by θ as fol-
lows: πθ : st 7→ ∆qt, where the observation state st is given
by the concatenation of the robot’s proprioceptive state srobot,
the goal object state sgoal, and a normalized task timestep
t/T . Here, the robot’s proprioceptive state includes joint
positions qt ∈ Rn, target joint positions qtarget

t ∈ Rn, and
joint torques τt ∈ Rn. The output residual joint adjustments
∆qt ∈ Rn represent incremental corrections to the current
joint configuration. Formally, qt+1 = qt + ∆qt, where qt+1

are the executed joint positions.
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Fig. 3: Real-world experiment setup. The workspace includes an
(1) AprilTag, (2) tool tracking markers, (3) hand tracking markers,
and an (4) RGBD camera.

The reward function combines separate terms for position
alignment, orientation alignment, and penalties for large
deviations. We define the position reward as using a mean
square error:

rtp = max
(
1− αp · ||ptobj − ptgoal||2, 0

)
,

where ptobj, p
t
goal ∈ R3 are the current and target object

centroid positions, and αp is a scaling coefficient. We define
the orientation reward using a quaternion dot product:

rtq = max
(
1− αq · (1−

∣∣qtobj · qtgoal

∣∣), 0)
where qtobj, q

t
goal ∈ S3 are the current and target object

quaternions, and αq is a scaling coefficient. A large negative
penalty rtpen is applied if the position or orientation exceeds
predefined thresholds δp for position or δθ for orientation.
Episodes are reset after the penalty is applied. The final
reward at timestep t is given by: rt = rtp + rtq + rtpen.

We implement our policy πθ using proximal policy opti-
mization (PPO) [39]. Our network consists of an input layer
that receives the state st, followed by a 512-unit LSTM [40]
layer, an MLP with hidden sizes 512 and 256, and an output
layer that predicts the residual joint adjustments ∆qt.

Given optimized grasps G∗, our simple reward formulation
is sufficient to guide the policy to converge in ∼15 minutes
on a single NVIDIA RTX 4070 Ti Super.

IV. EXPERIMENTS

Our experiments seek to validate whether Grasp-to-Act
enables dexterous robot hands to maintain stable, functional
grasps during dynamic and contact-rich manipulation tasks.
The proposed tasks pose diverse challenges, requiring grasps
to maintain low positional and angular errors, while facing
repetitive impacts or continuous external forces.

A. Hardware Setup

We deploy our pipeline using a 16-DoF LEAP hand [8]
mounted on a 6-DoF UR5 robotic arm, and a stationary Intel
RealSense D435 RGB-D camera. The execution procedure
in the real world involves the following steps:

We identify the object’s initial pose relative to the camera
frame Tcam←obj ∈ SE(3) using FoundationPose [34]. We
use an AprilTag [41] fixed in the workspace to determine
the camera’s pose relative to the global coordinate frame
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Fig. 4: Human demonstrations of the five functional tasks we
test with in this paper: hammering, sawing, cutting, stirring, and
scooping.

Tworld←cam ∈ SE(3). Given our optimized grasp’s wrist pose
relative to the object’s frame Tgrasp, we can compute the
grasp location in the world frame Tworld←grasp by chaining the
transformations: Tworld←grasp = Tworld←cam ·Tcam←obj ·Tgrasp

The UR5 arm moves the robot wrist to Tworld←grasp via
inverse kinematics (IK), after which the LEAP hand executes
the optimized finger joint configuration qo. We assume that
the grasping region is unobstructed at execution time.

Following grasp execution, the robot moves the grasped
object to align with the initial position of the demonstrated
trajectory. Specifically, at each timestep t, the target wrist
pose Tt

hand is calculated from the human-demonstrated object
trajectory {Tt

obj}Tt=1 as described in Sec. III-C. IK is used
to move the robot wrist to each sequential pose Tt

hand.
Concurrently, the RL policy πθ issues joint adjustments ∆qt
at each timestep. Both the wrist trajectory and finger joint
angles are updated synchronously at a control frequency of
30 Hz.

We use an OptiTrack motion-capture system with a rigid
four-marker mount attached to each object to accurately
record its 6D pose during real-world trials (see Fig. 3).

B. Tasks and Objects

We evaluate our approach on five manipulation tasks that
require different stable grasps and dynamic control (see
Fig. 4). These tasks involve different object geometries, force
applications, and motion patterns. For each task, we also
define a task completion metric T to quantitatively assess
performance in the real world:
(a) Hammer: Drive a nail 2 cm above a drywall stack using

a steel claw hammer (30 cm length, rubber handle,
520 g) with 4 strikes. Performance is the fraction of
the nail embedded.

(b) Saw: Cut an 8 cm groove through drywall using a
handheld saw (26 cm serrated blade, metal handle,
365 g) with 12 forward–return motions. Performance
is the sawed length relative to the target.

(c) Cut: Slice a 5 cm cucumber segment using a stainless-
steel kitchen knife (8-inch blade, plastic handle, 155 g)
with 16 forward–return motions. Performance is the cut
depth normalized by the cucumber diameter.

(d) Stir: Stir pancake batter with a plastic ladle (32 cm
length, plastic handle, 60 g) for 26 clockwise rotations.
Performance is the fraction of total stirring time the tool
is held securely.

(e) Scoop: Transfer 35 g of pinto beans using the same ladle
in one motion. Performance is the transferred mass ratio
to the target weight.

C. Baselines

We compare our method against several baselines repre-
sentative of analytical optimization and RL-based approaches
commonly used in dexterous manipulation tasks:

(1) Analytical [6], [2], [3]: Grasps are synthesized using
a geometric differentiable optimization method. To make
this baseline suitable for our functional tasks, we initialize
the optimization from human-demonstrated wrist poses near
functional regions of the tool, and then rank generated grasps
using our evaluation protocol.

(2-5) RL-based methods: These baselines are given a
5 second initialization phase, where the object remains fixed
in space, allowing the robot hand to change its initial wrist
and finger configurations to make a grasp. The initial wrist
pose is placed at the human-demonstrated wrist location. To
encourage wrist alignment during this initialization phase,
we incorporate a proximity reward rw that penalizes the
distance between the wrist and the object. Formally written
as: rw = max (1− αw∥pwrist − pobj∥2, 0) . (2) RL base: This
policy initialized from a default joint-angle configuration
with no modifications. (3) RL w/ Contact Rewards [42]: This
policy integrates explicit finger-object proximity rewards to
encourage grasping with all fingers. (4) RL w/ Pre-Grasp
Pose [26]: The policy initialized from a retargeted human-
demonstrated finger joint configuration, enabling the policy
to refine grasp poses that closely match human grasps. (5)
RL w/ Eigengrasp [30], [31], [26]: The policy actions
are constrained within a low-dimensional (5-dimensional)
eigengrasp space derived from principal component anal-
ysis (PCA) of human grasps. This reduces action-space
dimensionality and guides the exploration toward human-like
grasps. We directly use Lum et al’s controller [26].

(6) G2A w/o Adaptation: This baseline refers to the grasps
synthesized by our grasp optimization pipeline without the
RL-based online adaptation. (7) G2A: This is our full
method.

D. Evaluation Metrics

We evaluate performance using three metrics shared across
simulation and real-world experiments: in-hand translational
slip distance Et, in-hand rotational slip distance Eθ, and ei-
ther grasp success S (used in simulation) or task completion
T (used in real-world experiments).

1) In-hand translational slip distance Et (cm): For
episodes without object dropping, we measure the average
positional deviation of the object centroid from the target
trajectory when no slip occurs: Et =

1
T

∑T
t=1

∥∥∥ptobj − ptgoal

∥∥∥
2

2) In-hand slip rotation distance Eθ (◦): Similarly,
for successful episodes, we calculate the average angu-
lar deviation between the object’s orientation and the tar-
get orientation when no slip occurs: Eθ = 1

T

∑T
t=1 2 ·

arccos
(∣∣∣qtobj · qtgoal

∣∣∣)
3) Task performance: As the tasks are not explicitly

modeled in simulation, we instead report a grasp success S
(%) indicating whether the object remains held throughout
the episode without dropping. In real-world experiments, we
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Method S ↑ Et ↓ Eθ ↓ S ↑ Et ↓ Eθ ↓ S ↑ Et ↓ Eθ ↓ S ↑ Et ↓ Eθ ↓ S ↑ Et ↓ Eθ ↓

Analytical [6], [2], [3] 0.0 – – 0.0 – – 0.0 – – 0.0 – – 0.0 – –
RL base 100.0 0.93 4.07 54.7 6.63 13.53 81.2 0.85 6.25 98.5 0.51 5.34 100.0 0.52 2.57

+ contact reward [42] 100.0 0.86 3.99 49.3 6.92 14.16 74.6 0.94 7.43 100.0 0.47 4.54 100.0 0.46 1.94
+ pre-grasp pose [26] 100.0 0.88 9.48 100.0 2.24 6.74 20.4 2.20 17.04 100.0 0.45 3.47 96.9 1.23 6.32
+ eigengrasp [30], [31], [26] 67.2 1.70 14.36 100.0 1.95 5.84 0.0 – – 0.0 – – 0.0 – –

G2A w/o Adaptation 100.0 0.82 7.33 100.0 1.29 3.90 100.0 0.54 3.53 100.0 0.92 4.73 100.0 0.69 3.69
G2A (ours) 100.0 0.69 1.35 100.0 1.06 3.13 100.0 0.48 2.23 100.0 0.24 2.08 100.0 0.17 1.25

TABLE I: Simulation results across five tasks. We report the grasp success S (%), in-hand translational slip distance Et (cm) and in-hand
slip rotation distance Eθ (◦). All error metrics (Et, Eθ) are averaged over successful episodes.

Method S (%) ↑ Et (cm) ↓ Eθ (◦) ↓ Hammer

RL base 100.0 0.93 4.07
G2A w/o Adaptation 100.0 0.82 7.33
G2A (ours) 100.0 0.69 1.35

RL base 46.6 2.04 17.12
G2A w/o Adaptation 92.3 1.02 11.43
G2A (ours) 100.0 0.94 2.69

RL base 83.7 1.91 5.98
G2A w/o Adaptation 100.0 0.91 9.75
G2A (ours) 100.0 0.78 1.57

TABLE II: Generalization across hammer types. ⋆ indicates that
the method was trained for that tool instance only. We report the
grasp success S (%), in-hand translational slip distance Et (cm)
and in-hand slip rotation distance Eθ (◦).

measure task completion T defined in Section IV-B, which
directly reflects functional task success (e.g., nail inserted,
material cut).

V. RESULTS

A. Experiments in Simulation

We evaluate our method and all baseline methods across
all tasks in simulation over 3 random seeds, reporting average
performance in Table I. For the optimization-based baselines,
we select the top three highest-scoring grasp candidates. The
RL-based policies are trained for 100K environment steps per
task.

1) Performance Across Tasks: We first evaluate all base-
line and proposed methods across the five tasks (Sec. IV-B)
in simulation.

Analytical baseline method fails to achieve stable grasps
across all tasks. The synthesized grasps are mostly precision
grasps, which suffice for picking up lighter objects such as
the knife or ladle, but fail when subjected to any task-specific
forces.

RL base and RL w/ Contact Reward perform similarly in
simulation. Both methods often converge to suboptimal local
minima, characterized by limited finger utilization and visu-
ally unstable grasp configurations that nonetheless work un-
der simulation dynamics. Further, the lack of a human grasp
prior is evident in the sawing task, where the policies grip
around the handle rather than inserting fingers into it, making
it difficult to maintain a secure hold. RL w/ Pre-Grasp Pose
baseline provides strong performance in tasks where the
human strategy is compatible with the robot embodiment.

For instance, initializing with fingers already within the saw
handle helps maintain stability during execution. However,
this benefit does not generalize across all tasks. In the knife
task, the human grasp relies on the thenar eminence (the
lump at the base of the thumb), which the LEAP hand lacks.
As a result, direct retargeting can lead to poor initialization.
RL w/ Eigengrasp is particularly interesting. The approach
yields human-like grasping strategies, as observed in prior
work. The initial training converges rapidly compared to RL-
only methods, reflecting the lower-dimensional, structured
action space. However, this same action space reduction
limits dexterity for objects with smaller or more intricate
grasp regions. As the handle size decreases, the inability to
execute fine-grained finger adjustments prevents the policy
from establishing sufficient contact on objects.

G2A w/o Adaptation baseline produces grasps that remain
stable throughout the entire trajectory and do not drop the
object during execution. However, under repeated application
of task-specific forces, particularly in hammering, cumulative
pose errors accrue over time. G2A consistently outperforms
all baselines. By leveraging analytically optimized grasps
as initialization, the RL policy starts with a stable grasp
configuration, allowing the policy to focus on minor ad-
justments to prevent or fix slip or rotation under dynamic
task conditions. This narrows the exploration space and
substantially accelerates policy convergence.

2) Generalization across Tool Variants: To assess robust-
ness to unseen tool geometries, we evaluate across three
hammer variants that differ in mass distribution and handle
shape (Table II). All policies were trained and optimized only
on the first (marked with ⋆) hammer instance and directly
tested on the other two without retraining.

RL base policy, which learns a task-specific grasping
strategy, performs well only on the original hammer but fails
to generalize—minor shifts in handle thickness or head ge-
ometry lead to loss of contact and frequent object drops. G2A
w/o Adaptation baseline maintains secure grasps initially
but cannot compensate for variations in handle diameter,
resulting in partial slip for the thinner-handled hammer. In
contrast, our full G2A method consistently preserves grasp
stability across all hammer variants, achieving 100% success
with minimal translational and rotational slip errors (Et,
Eθ). These results highlight that the online adaptation policy
effectively compensates for geometric and inertial changes.
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Fig. 5: Real-world results across five functional tasks. Comparison
of (a) In-hand translational slip distance Et (cm), (b) In-hand slip
rotation distance Eθ (◦), and (c) task completion T . Task-specific
definitions of T are provided in Section IV-B.

B. Real-World Experiments

We evaluate over 10 real-world trials per task against two
baselines: G2A w/o Adaptation, the strongest non-adaptive
policy, and RL Base, a consistent RL variant that performed
reliably across most tasks. Results are shown in Fig. 5. Some
examples of the experiment episodes and the rotational slip
deviation is shown in Fig. 6.

RL Base policy performs reasonably in simulation but
transfers poorly to hardware. In practice, objects such as the
hammer and saw slip once large external forces are applied.
Only lightweight tools can be manipulated successfully, and
even then, significant orientation drift occurs.

G2A w/o Adaptation baseline demonstrates markedly
stronger sim-to-real transfer. The synthesized grasps remain
stable throughout most trials, reflected in lower translation
and orientation errors than RL Base. However, as seen
before, while these grasps remain secure, residual pose drift
accumulates during longer or more dynamic motions, leading
to moderate Et and Eθ values. Our full G2A method achieves
the lowest translation and orientation errors across all tasks,
along with the highest task completion T . As shown in
Fig. 6, per-task orientation traces highlight the stability of
G2A over time. Orientation errors remain bounded even
under repeated impacts or resistive forces. The adaptive
policy adjusts finger configurations in response to contact,
maintaining grasp stability throughout the task.

VI. DISCUSSION

In this paper, we study grasp configurations and adaptive
control strategies to maintain stability during real-world
manipulation tasks involving significant dynamic forces. The
current implementation is based on two simplifying assump-
tions: (1) the initial graspable region is unobstructed, and (2)
the object geometries are relatively simple.

In practice, any objects rest on tables or shelves, where
contact with the surface can obstruct part of the graspable
area. In this case, our framework cannot execute the desired
grasp. To address this, our method could be combined with
adaptive grasping strategies to maneuver objects into target
grasp configurations [14].

For objects with more complex geometries—though such
cases are less common in dynamic, force-intensive ma-
nipulation—our sampling-based grasp synthesis could be
further improved by integrating geometric grasp-planning
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Fig. 6: Real-world rollouts. In-hand slip rotation distance Eθ for one
representative rollout per baseline across the tasks. Task snapshots
show the G2A execution.

techniques, which may enable more efficient generation and
evaluation of grasp candidates.

VII. CONCLUSION

We presented Grasp-to-Act, a framework that enables dex-
terous robotic hands to achieve stable and functional grasps
across diverse real-world manipulation tasks. By combining
grasp optimization with reinforcement learning–based adap-
tation, our approach maintains robust control under dynamic,
contact-rich conditions. In real-world experiments, G2A con-
sistently outperforms baselines, achieving the highest task



completion rates across a range of tasks such as hammering,
sawing, cutting, stirring, and scooping. These results look to
bridge the gap between simulation and practical deployment
for functional dexterity.
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